
AI-Driven Sonification of Automatically Designed Games

Sara Cardinale, Michael Cook and Simon Colton
School of Electronic Engineering and Computer Science

Queen Mary University of London
s.cardinale@qmul.ac.uk, mike@possibilityspace.org, s.colton@qmul.ac.uk

Abstract

Music and other sound cues are used to support, enhance and
change the experience of playing every type of digital game.
In this paper we explore the sonification of game states, the
direct translation of game events or situations into music. We
present three strategies for allowing AI to convey information
to the player using sonification, creating a pleasing sound-
track while also affecting the play experience. We extend this
to automated game design and suggest that sonification could
be embedded into automated game designers to directly in-
fluence the design process.

Introduction
Sonification is the act of using sound or music to convey
non-aural information, either for functional or aesthetic pur-
poses. Early examples of sonification that are often given
are the Geiger counter, which translates radiation levels into
an auditory warning, making it easier to hear both the pres-
ence of radiation, as well as the intensity. Sonification is also
used as a game mechanic or narrative device in games such
as Alien Isolation, In Other Waters, or S.T.A.L.K.E.R.

Automated game design (AGD) is the science and engi-
neering of AI systems that model, participate in or support
the game design process. This can include tools which help
users explore design work; models of game design theo-
ries or frameworks; and systems which design games au-
tonomously. A common goal for AGD research is expanding
our idea of how AI can influence game design, and finding
ways for AGD systems to create new kinds of experience
(Barros et al. 2018), or solve new kinds of design problem,
using novel approaches (Sturtevant et al. 2020).

Composing music for videogames is a complex creative
task, and has been approached in a variety of ways, from lin-
ear soundtracks (Larkin 2017) through to complex adapative
or generative works that dynamically compose accompani-
ment to player actions (Weir 2016). The composition of mu-
sic is thus as much part of the game design process as artistic
direction or narrative design, and therefore a valid topic for
automated game design research to consider. In fact, music
offers a unique opportunity for an automated game designer
to communicate emotions, knowledge and atmosphere to the

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

player, through a careful combination of musical knowledge,
sonification strategies, and game AI analytics.

In this paper we present the results of our sonification ex-
periments working with Puck, an automated game designer.
We report on preliminary experimentation sonifying Puck’s
games, and considering different ways in which information
about a game can be sonified, for both emotive and commu-
nicative purposes. We also comment on how difficult imple-
menting each of these strategies is: how much it is affected
by a specific game design; how much musical knowledge
is required; and how expressive the resulting music is. We
show that sonifying game states can yield a range of excit-
ing new musical approaches for games and propose that, in
the future, automated game designers such as Puck could
be adapted to design their own bespoke music composition
systems for each new game they design.

Background
Puck
Puck is an automated game designer, described in (Cook
2022), released as a downloadable app that can be run lo-
cally on any computer. Each version of Puck keeps a record
of what it creates, allowing it to build an understanding of
its design space over time, and maintain a creative history
of how its work has developed. Puck also works on long
timescales, taking days or weeks to finish a game design, and
switching between different projects. These features aim to
improve the ‘presence’ of the system, in the computationally
creative sense, by allowing people to develop an apprecia-
tion of the system and anticipate its creative process. Puck’s
creative process is constantly visualised and can be watched.

Puck uses a combination of evolutionary search and
partially-exhaustive content generation to slowly explore a
design space, using past results to adjust its future search de-
cisions, but retaining all results whether good or bad. Eval-
uation of games is achieved using AI agents which play the
game in different ways and at different skill levels. The per-
formance of these agents is then analysed by Puck and com-
bined with other analytical tools to create a measure of how
promising or interesting Puck considers the game to be.

Puck is built in a modular fashion, allowing for new capa-
bilities to be added and removed dynamically. In (Johansen
and Cook 2021) the authors consider how the automation of



game feel design can be added to Puck’s workflow through
the use of a pre-existing tool for generating game feel ef-
fects called Squeezer. In this paper, we explore new areas for
which no existing tool exists, namely the design of dynamic
and emotive soundtracks that are suited to a previously un-
seen game’s design. Our focus for this paper was to explore
what possibilities exist for sonifying game states based on
the same kinds of analytical process that Puck already uses
to evaluate games for quality.

For our experiments in this paper, we looked at two dif-
ferent games. As in Johansen’ study of game feel effects
in Puck, we chose one automatically designed game and
one human-designed game, to provide a balance of perspec-
tive between Puck’s games (which may not be commercial-
quality) and established games that have been refined over
decades of play. As one of our goals is to enable Puck
to design musical systems for any game, studying human-
designed games is important from a co-creative perspective,
as well as studying how Puck can create musical systems for
its own games.

Antitrust Antitrust is a game designed by Puck in 2021
and described in (Cook 2022). It is played on a 5x5 board
by two players. Players take it in turns placing pieces of their
colour on the board, meaning a board tile location can have
three states: empty, or with a piece of either player colour. At
the beginning of a player’s turn, if there are any rows of four
or more pieces of the same type (of either colour) they are
removed from the board. When a player plays a piece, if the
board is full the game ends, and the winner is the player with
the most pieces on the board. Figure 1 shows a screenshot
from Antitrust.

SameGame SameGame is a game designed by Kuniaki
Moribe in 1985, and a popular game for amateur develop-
ers to clone and develop variants of. It is typically played on
a 10x10 board for a single player, but many variations ex-
ist and Puck’s version is played on an 8x8 board as this is
the maximum board size Puck can currently represent. The
board is initially filled with a random collection of pieces of
four different colours. When a player clicks on a tile, all con-
tiguously connected tiles of the same colour are destroyed
(assuming at least three tiles are connected). Pieces then fall
down and gather together to fill in gaps, and the player scores
points proportional to the number of tiles destroyed. The
game ends when the player can no longer destroy tiles, or
the board is cleared.

Neo-Riemannian Theory
Neo-Riemannian Theory (NRT) comprises methods for
analysing chord progressions composed using triadic chro-
maticism, in which the progressions are not restricted by
tonality. This means that the music can change in ways that
are unexpected to the listener, providing a wide range of
emotional effects. Such chord progressions can be challeng-
ing to analyse with conventional music theory, which mostly
relies on keys and modes to understand the musical context
and the development of harmony and melody. Analysing a
piece of music through the lens of NRT involves identify-
ing which NRO (Neo-Riemannian Operator) or sequence of

Table 1: NRT Rewrite rules for major and minor chord start-
ing points. In each case, the starting chord is {a, b, c}.

NRO Major Minor

R {a, b, c+ 2} {a− 2, b, c}
P {a, b− 1, c} {a, b+ 1, c}
L {a− 1, b, c} {a, b, c+ 1}
N {a, b+ 1, c+ 1} {a− 1, b− 1, c}
N ′ {a− 2, b− 2, c} {a, b+ 2, c+ 2}
S {a+ 1, b, c+ 1} {a− 1, b, c− 1}

Table 2: Association of NRO sequences and emotional
and/or situational scene elements (Lehman 2014).

Compound NRO Emotion/Situation

LP Antagonism
L Sorrow, loss
N Romantic encounters
PRPR Mortal threats, dangers
RL Wonderment, success
NRL Suspense and mystery
RLRL Heroism (Lydian)
NR Fantastical
S Life and death

NROs (a compound NRO) has been applied to a triadic chord
to produce the next in the progression, if any. In order to fa-
cilitate the application of NRT to generative music, Cardi-
nale and Colton (2022) rationalised NRT in terms of rewrite
rules based on the original NROs, as per table 1.

NRT is well-suited for analysing film and videogame
soundtracks, as this musical genre often uses chromatic
chord progressions to quickly respond to on-screen or in-
game events (Lehman 2014). For example, the sudden and
dramatic appearance of a character can be immediately
matched with a powerful change in chord progression. Fur-
thermore, the relationship between chords described by NRT
is well-suited to be implemented in generative systems to
compose associative film and videogame music that follows
a visual media narrative. The formalisation of NRT as an
analysis technique was carried out by Cohn (1998) where
a mathematical description of NRT was put forward. More-
over, referring to film music, Lehman (2014) mapped com-
pound NROs to emotional/situational changes in film narra-
tives, as per table 2, which we draw upon later.

Related Work
As discussed earlier, sonification has been used widely as
a tool for data comprehension, accesibility, and creativity.
Games research has also leveraged sonification to explore
new applications to the medium. For example, SoniFight
(Lansley et al. 2018) creates additional aural cues for games
to increase accessibility for visually impaired players. This
utility software allows players to add aural cues for mean-
ingful gameplay information, such as how many seconds
are left in the round, player’s health, amount of ammuni-
tion, and the player’s location in the playfield. SoniFight
uses watches, a pointer chain that finds the value of inter-
est (e.g. player’s health) and its data type, and triggers to



play the audio cue based on the watch value. Players can
share their SoniFight configurations for games, allowing for
collaboration between users. While our approach here is not
built with accessibility in mind, it could be an interesting
extension of this work to consider it in the future.

Game AI research has also applied sonification to game
content generation. For example, Sonancia (Lopes, Liapis,
and Yannakakis 2015) blends level architecture and audio,
choosing and mixing sound to create the soundscapes of
a level and create an aural experience that can be adapted
to any level. Sonancia focuses on creating frightening and
tense soundscapes. The sonification system builds the sense
of tension as the player progresses through the level, en-
suring that player engagement is maintained throughout the
gameplay by subtly choosing and changing instruments, so
that the music does not become distracting. Sonancia uses
two algorithms, one to choose instruments and one to ar-
range the way that sounds are played based on the current
intensity. The results of this tool showed that it can consis-
tently create unique soundscapes and it can create a sense of
narrative progression within the level.

Our approach has similarities with Lopes et al.’s work,
in that one of our objectives is to provide an aural context
for the narrative arc of gameplay. However, we aim to pro-
vide general sonification techniques that can be adapted to
a range of game designs, from single-player arcade games
to two-player strategy games. Additionally, rather than aim
for a designed tension arc, our sonification strategies adapt
to the current state of the game, led by the player or players.
Our work can therefore be seen less as a tool for a designer
creating a specific experience, and more as an accompani-
ment or enhancement to the game’s natural flow.

There is also a well-defined space of audio-only games, or
games with strong aural components that can be played with
little or no visual information. This includes games designed
to be played through movement or other indirect sensors,
such as Zombies, Run!, J. S. Joust or Bounden. It also in-
cludes games designed with blind or visually-impaired users
in mind, such as The Vale (Squirrel 2021), which uses bin-
aural sound and conveys all necessary information to play
the game purely through audio. While this is not the same
as sonifying game information through music, it does show
how games can fully rely on aural information for their de-
sign. Our work focuses on augmenting visual games for the
time being, but the possibility of applying this to fully audio-
driven games in the future holds a lot of promise.

Sequencer-Based Sonification
We initially experimented with sonification by building a
system that would continually produce music sonifying the
overall state of the game, rather than individual player activ-
ity. Inspired by games such as Chime Sharp (Curran 2016),
and by grid-based MIDI controllers such as the Novation
Launchpad, we treated Puck’s game board as a one-track se-
quencer. The sequencer’s track is defined as starting at the
top-left board position (as viewed by the player) and play-
ing left-to-right, top-to-bottom. When the sequencer head
reaches a new board position, if there is a game piece on the
board at that location it plays a note, sample or other sound

Figure 1: A screenshot of Antitrust with a sequencer. The
yellow tile indicates the sequencer’s current position.

depending on the type of piece. When the sequencer head
reaches the end of the board, in the bottom-right, it resets
back to the top-left.

Supporting the sequencer, we added a basic ambient back-
ing track, with the sequencer head progress matched to the
BPM of the backing track. Because player activity does
not directly affect the music at the moment of play, the se-
quencer and the speed of play are unrelated to one another,
which we hypothesised would allow the music to remain at a
sufficient distance from the player to avoid interfering with
gameplay. We added a small visual indicator to the board
to show the location of the sequencer head, so the player
could more easily identify the progress of the music. Figure
1 shows a screenshot of Antitrust being played in Sequencer
mode, with the yellow tile on the second row showing the lo-
cation of the head, which gently fades in and out as it moves
between grid locations.

Our initial testing with this prototype suggested two ef-
fects to us: first, although we intended there to be distance
between the soundtrack and player actions, we found the
music nevertheless had a subtle impact on our play choices,
encouraging the player to avoid grouping too many pieces
in a small area, and filling in gaps where no sounds were
being produced to even out the disruption of sounds in the
full loop. Secondly, we observed that in a game such as An-
titrust, where the objective is area control, the sequencer’s
output gently indicates which player is ‘winning’ in the
sense of having overall board control. The generated music
flows between emphasising one player’s pieces or the other.

Implementation Of the three strategies we present in this
paper, sequencer-driven sonification is the easiest to imple-
ment within an automated game designer, as it requires no
contextual information about the game itself and can, in the-
ory, be implemented in any game. However, although it can
be implemented with no additional information, some games
suit it better than others. Antitrust, with its relatively small
board size and sparse piece coverage, has a naturally slow
buildup of pieces, and every piece is precisely placed by a
player, making its sequencer output relatively atmospheric.
SameGame by contrast starts with a randomly filled board of
the maximuim size allowable by Puck, which means the se-
quencer output has less meaning and is more cacophonous.
Thus although this is a one-size-fits-all approach, it is not



always the best choice.

Heuristic-Driven Sonification
This approach uses heuristic functions that measure proper-
ties of the game’s flow and progress to modify an ambient
soundtrack accordingly. This approach is customised more
precisely to a particular game design, but as a result requires
more preparation to use.

We define a progress heuristic as a simple measurement of
a game’s proximity to an end state. More formally, we could
define such a heuristic as a function which maps a game state
to a number in the range [0, 1], where 1 indicates a game
state that has reached completion (a win, loss or draw)1.
Progress measured this way is not monotonic increasing, in
that progress can be undone and games may move further
away from completion. Progress heuristics are also not an
exact reflection of how close a game is to completion. In-
stead, what we aim to achieve with a progress heuristic is a
measurement that is close to the average player’s approxi-
mate sense of how close a game is to completion.

As an example, consider Antitrust. Antitrust’s game end
state is the board being full of pieces, therefore a useful
progress heuristic would measure the number of pieces on
the board, and divide by the number of spaces on the board.
However, pieces can be removed from the board if rows of 4
or more are made, and this happens often during the game,
therefore a game that is close to completion can be reset to an
earlier stage of progress. Nevertheless, the ‘fullness’ of the
board does correlate with an observer’s sense of how close
the game is to completion.

We tie the progress heuristic for the current game to the
background sound in our sonifier. In our experiments we use
the progress heuristic to drive the BPM of the background
track, making it faster as the game nears completion, updat-
ing it each time a player makes a move. This could be tied
to other aspects of the music, however, including the overall
volume, the mix of different tracks, or the selection of instru-
ments. Multiple heuristics could be made, tracking different
game features (such as the progress of individual players to
winning, with each controlling the mix of competing instru-
mental tracks, for example).

Implementation Implementing this approach for an auto-
matically designed game is not entirely straightforward, as a
progress heuristic must be created that suits the game design.
For example, the progress heuristic mentioned above for An-
titrust, i.e., how close the board is to being full, is the exact
opposite of an appropriate progress heuristic for SameGame,
where the game board begins filled up. In the case of Puck,
we are able to automatically select progress heuristics from
a catalogue of pre-written functions based on the end condi-
tions for the game – for example, an ending condition based
on a player making three-in-a-row would track the length
of the longest row of pieces. However, automatically gen-
erating bespoke progress heuristics, that take into account

1The definition of 0 would vary depending on the game in ques-
tion, as the opposite of a game’s end state is not necessarily a
game’s starting state.

the complex dynamics of the whole game design, is a more
challenging task. We discuss this in Future Work.

NRT-Driven Emotional Sonification
This approach uses game events as triggers for changes
within a generative musical composition. The sonification
system receives contextual information about changes to the
game state, and translates this into emotional cues which
are mapped to chord transitions via Neo-Riemannian The-
ory rewrite rules, as described above.

Evaluating Game Events
Unlike the previous two sections, which sonify the overall
flow of the game, this approach directly responds to in-game
events. For our purposes we restricted our system to respond
to player actions only, namely tapping the board to place
pieces in Antitrust, or to destroy pieces in SameGame. How-
ever, this approach could be easily generalised to respond to
other in-game events.

When a player takes a game action, we need to be able to
provide some context to the sonification system about how
the soundtrack should respond. We focused on evaluating
the quality of the move made, so the player (and any ob-
servers) can gain an awareness of how good or bad each
move is perceived to have been as the dramatic arc of the
game continues. To evaluate a particular move as good or
bad, we use Puck’s in-built MCTS agent to play every po-
tential move available to the current player and rank them
according to how good it expects the move to be. When the
player selects a move, the move’s overall rank is then sent
to the sonifier, so it can respond with an appropriate shift in
emotion in the soundtrack.

Although the same MCTS system is used to both compute
opponent moves and evaluate move quality, the AI opponent
does not always take the move considered ‘optimal’ because
it is playing at a lower level of skill than the AI agent used to
evaluate move quality. As described in (Cook 2022), we vary
the skill level of an AI MCTS agent by changing the com-
putational resources provided to it. In our prototype sonifi-
cation example we use a high-skill MCTS agent to evaluate
moves, and a medium-skill AI to play the game.

NRT-Driven Synthesis
In this approach, we utilise NRT-driven sonification of
player moves: given the ranking of each player’s moves, we
sonify significant moves (either good or bad) played across
the course of a game. During our initial experiments, we did
this by recording a full gameplay session with move analysis
and composing the music post-hoc, sonifying the first, best
and worst move made across the whole game.

In the previous examples, we made use of samples to
play sound. For this sonification approach, we created a tool
which implemented the generative rationalisation of NRT as
described in (Cardinale and Colton 2022), to provide emo-
tional adaptation of the music based on the quality of the
move made by the player. Our tool, GENRT, allows both
planned, scripted and dynamic music generation using NRT
transforms. This can be used to generate background music



for videos, using a cue-sheet, or to respond with dynamic
music to accompany live gameplay. Additionally, GENRT
can produce various styles of music by allowing the user to
control instrumentation, tempo, elements of rhythm, aspects
of the chord changes allowed by generative NRT, and how a
voice-led melody is produced above (or below) the chord se-
quence. In particular, GENRT allows music to be generated
in a series of episodes, each with different specifications for
the music production. The specifications are blended over a
series of bars, using sliding probabilities, instruments over-
lapping with sliding volumes and averaging of parameters.
The blending of generative specifications leads to a fairly
smooth blending of the music produced. In particular, it is
possible to have episodes with increasing tempo, which can
subtly increase perceived tension.

In addition, we extended Cardinale and Colton’s ratio-
nalisation of NRT by implementing re-write rules for sus-
pended (Sus2 and Sus4) and augmented chord types and
adding them to our GENRT tool. This extension improves
the ability of the tool to convey emotion, providing differ-
ent types of chords and therefore different musical colours.
For instance, Sus2 and Sus4 chords do not contain the third
scale degree to classify them as major or minor, giving them
a neutral sound. Furthermore, the lack of the third degree
and its replacement with the second, in the case of Sus2, or
the fourth degree, in the case of Sus4, creates a small cluster
of two intervals close to each other (1st-2nd or 4th-5th). This
cluster calls for an aural resolution to the third scale degree
to finally reveal the chord’s key, thus creating tension when,
or if, there is no resolution. Expanding the palette of chords
GENRT composes with enables the generation of a broader
and richer collection of emotional music accompaniment.

GENRT produces background music for Puck gameplay
videos as a chord progression, by starting with a given chord,
then repeatedly randomly choosing a compound NRO with
some user-imposed constraints, and applying this to produce
new chords. Bass, melody and percussion lines are added to
correspond to the chords, with fairly simplistic techniques.
To make this background music bespoke to a Puck game
playthrough video, particular compound NROs are used to
substitute the random ones at key points in the video narra-
tive. These substitutions are chosen according to table 2 to
appropriately reflect the game change: the RL (wonderment)
compound NRO is used to choose the chord played when the
first move occurs; RLRL (heroism) chooses the chord for the
best move; and PRPR (danger) is used for the worst move.
For post-hoc accompaniment production, the user provides a
text file of cues, specifying the timestamps and nature of the
most important moves in a game video. In future, the eval-
uation Puck makes of a player’s move will be used to drive
the music generation during live gameplay.

We originally found the background chord sequences to
be too dramatic for the emotional chord changes to be au-
dible. Hence we added a constraint that during background
music generation, the random compound NROs chosen must
produce chords where the tonic, third and fifth are all within
a given, fixed key. In addition, the application of an emo-
tional compound NRO forces the change of the fixed key
to the one specified by the chord produced. We found that

this approach makes music where the dramatic change was
clear and sustained over the duration of a few following
chords. Additionally, using the episodic nature of GENRT
music production, we increased the tempo slowly over two
episodes spanning most of the video. We also used the
episode specification to slowly change the bass from a soft
synth sound to a louder, more piercing cello line, and added
tick-tock style percussion to further subtly increase tension
in the music. To synchronise the emotional chord changes
with the video, we implemented an exhaustive technique
which tries all possible chord durations and percentage de-
crease in duration from the slow to the fast episode.

We have provided a recording of a game of SameGame
with an accompaniment produced by GENRT, which
demonstrates our NRT-driven approach.2 The emotional
chord changes are synced to the three important moves (first,
best, worst) to within an average of 0.3 seconds.

Future Work
In this paper we primarily focus on using AI techniques such
as game state evaluation as a driver for sonification strate-
gies designed by a human expert. We plan to develop a sys-
tem that is able to understand what would be an appropri-
ate sonification strategy for a given game. It might take into
consideration game design choices such as the type of board,
the game’s rules and what bad or good turns consist of. This
system could be implemented as a module within Puck or
another automated game designer to create soundtracks for
new AI generated games and compose music that is specific
to the game’s design, its gameplay and rules.

In future, we aim to empower automated game design-
ers to create games with a sonification-first approach, rather
than selecting sonification strategies after the fact. For ex-
ample, designing a game where playing well leads to more
harmonious, interesting or melodic output. This could lead
to the emergence of new types of game where player be-
haviour is subconsciously led by the sonification strategy,
gently showing the player optimal strategies, or even fully
teaching the player the game simply through sound cues.

We are interested in the sonification of automated game
design process, the process that an AI such as Puck goes
through when creating a game. This would allow the sonifi-
cation of the game designer’s ideas, and allow the audience
to hear the music develop and change as it encounters good
or bad ideas. For example, we would like to create a sound-
track to Puck’s design process which sonifies the steps that it
goes through to develop a new game, mapping or associating
certain features and aspects of the design process to musical
elements like BPM, modality and instrumentation, moving
from ambient to more fast-paced styles. This is especially in-
teresting as Puck designs abstract puzzle and strategy games,
and sonifying the environments, game pieces, and rules it
chooses can lead to wide musical variety of styles, keys and
instruments within the soundtrack. It could also provide a
way to add what is known as framing information to the cre-
ative process. Framing is a computational creativity term for

2Available at tinyurl.com/genrtdemo. Playback is muted by de-
fault - the unmute button is in the top-right of the video.



an AI’s ability to communicate its creative process to an au-
dience (Charnley, Pease, and Colton 2012). This would al-
low for a non-textual framing, with music that conveys the
direction of the creative process, how well it is progressing,
and whether unexpected things are happening.

Puck’s games are similar to genres of game that are typi-
cally simple visually, including abstract strategy games and
casual puzzle games. These games are played on a single
screen, with basic but eyecatching visuals that are easy to
read at a glance. While these games can be aesthetically
pleasing and excellent examples of design, they represent
only one type of game experience.

In our approaches in this paper, we connect music cues
and outputs to discrete and easily-identified aspects of game-
play. However, sonifying the player experience in a more
complex game such as a 3D open-world adventure game
would require a much deeper understanding of the game’s
design, context, and intended player experience. While there
are many examples of specific instances of dynamic, adap-
tive or context-sensitive music for videogames, there are no
examples of systems which can design such generative mu-
sic systems themselves

GENRT is in an early stage of its development, and there
is much work to be done to make the music it produces
not just appropriate for a particular game, but also to ex-
hibit high levels of musicality and diversity over the games it
works for. We plan to eventually make it available as a plugin
for a major game engine such as Unity or Unreal, to make
it easily available for people to make bespoke soundtracks
for games and/or for automated game designers to develop
music-generation systems which run as the game is played.

Conclusions
In this paper we have described three approaches to sonify-
ing games in the design space of Puck, an automated game
designer. Each of the three approaches surfaces a different
kind of information to the player, at different levels of promi-
nence, and with differing levels of complexity in their imple-
mentation. All three approaches can be easily reapplied to
other games in Puck’s design space, meaning an automated
game designer could be extended to apply these techniques
to games as they are designed.

Music composition, sound design, and game data sonifi-
cation are currently unexplored aspects of automated game
design. We believe we have shown there is great potential in
this space not simply to make compelling static soundtracks
for games, but to use music and sound as a new generative
layer through which the AI can communicate and shape dy-
namic and complex experiences. We are excited to expand
this further, and apply our work in Neo-Riemannian Theory
to build more expressive composition systems. Our next step
is to study user responses to these sonification strategies,
and better understand not just the emotional and personal
response to the music itself, but to also study the measur-
able effect the sonification may have – consciously or other-
wise – on the behaviour of the players experiencing it. We
are looking forward to exploring the expressive and creative
strengths of music composition in an automated game de-

sign setting, and building tools that open up this power to
game designers of all kinds.

Acknowledgements
This work has been funded by UKRI and EPSRC as part
of the “UKRI Centre for Doctoral Training in Artificial In-
telligence and Music”, under grant EP/S022694/1, and by
the Royal Academy of Engineering Research Fellowship
Scheme. We would like to thank the anonymous reviewers
for providing helpful feedback, which improved this paper.

References
Barros, G.; Green, M.; Liapis, A.; and Togelius, J. 2018.
Data-driven design: A case for maximalist game design pa-
per type: Position paper. Proceedings of the 9th International
Conference on Computational Creativity.
Cardinale, S.; and Colton, S. 2022. Neo-Riemannian Theory
for Generative Film and Videogame Music. In Proceedings
of the International Conference on Computational Creativ-
ity.
Charnley, J.; Pease, A.; and Colton, S. 2012. On the notion
of framing in computational creativity. In Proceedings of the
Third International Conference on Computational Creativ-
ity.
Cohn, R. 1998. Introduction to neo-riemannian theory: a
survey and a historical perspective. J. of Music Theory, 167–
180.
Cook, M. 2022. Puck: A Slow and Personal Automated
Game Designer. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment.
Curran, S. 2016. Chime Sharp.
Johansen, M.; and Cook, M. 2021. Challenges in Generating
Juice Effects for Automatically Designed Games. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment.
Lansley, A.; Vamplew, P.; Foale, C.; and Smith, P. 2018.
SoniFight: Software to provide additional sonification cues
to video games for visually impaired players. The Computer
Games Journal, 7(2): 115–130.
Larkin, C. 2017. Hollow Knight Soundtrack.
Lehman, F. 2014. Film Music and Neo-Riemannian Theory.
Oxford Handbook.
Lopes, P.; Liapis, A.; and Yannakakis, G. N. 2015. Sonancia:
Sonification of procedurally generated game levels. In Pro-
ceedings of the International Conference on Computational
Creativity.
Squirrel, F. 2021. The Vale: Shadow of the Crown.
Sturtevant, N. R.; Decroocq, N.; Tripodi, A.; Yang, C.; and
Guzdial, M. 2020. A Demonstration of Anhinga: A Mixed-
Initiative EPCG Tool for Snakebird. In Proceedings of the
Sixteenth AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment.
Weir, P. 2016. No Man’s Sky Soundtrack.


