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Abstract. We present the GENRT music generation system specifically
designed for making soundtracks to fit given media such as video clips.
This is based on Neo-Riemannian Theory (NRT), an analytical approach
to describing chromatic chord progressions. We describe the implementa-
tion of GENRT in terms of a generative NRT formalism, which produces
suitable chord sequences to fit the timing and atmosphere requirements
of the media. We provide an illustrative example using GENRT to pro-
duce a soundtrack for a clip from the film A Beautiful Mind.
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1 Introduction

Musical soundtracks are an essential part of many forms of media. They help
create an immersive experience by supporting story lines, portraying characters,
establishing the overall setting and mood, highlighting important events and
adding to the aesthetic value of media. Soundtrack music has requirements not
shared by music in general, which makes it an interesting and valuable target for
generative music, which could lead to useful tools for composers. Our problem
setting here is to be given an existing piece of media like a video clip from a
film, or an audio excerpt of an actor reading for an audiobook, and to generate
an appropriate soundtrack for it. The media is supplied along with a list of
episodes given in terms of (a) the start and end timestamps of the episode in
milliseconds (b) an overall atmosphere (e.g., calm) for the episode and (c) a
change in overall atmosphere to be reflected smoothly during the episode (e.g.,
getting more exciting). Optionally, each episode may have a particular event at
the conclusion of it, specified by the timestamp at which it needs to occur and
the emotional or situational change in the media that the event represents.

An appropriate soundtrack would have to satisfy many things, but we con-
centrate here on it being accurate in terms of timings of episodes and events,
influential in terms of musical changes which audibly support situational or emo-
tional changes in the media and atmospheric in terms of the nature of the music
between events. We describe the GENRT music generation system which can
produce MIDI files that act as accurate, influential and atmospheric soundtracks
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NRO Major Minor

R {a, b, c+ 2} {a− 2, b, c}
P {a, b− 1, c} {a, b+ 1, c}
L {a− 1, b, c} {a, b, c+ 1}
N {a, b+ 1, c+ 1} {a− 1, b− 1, c}
N ′ {a− 2, b− 2, c} {a, b+ 2, c+ 2}
S {a+ 1, b, c+ 1} {a− 1, b, c− 1}

Compound Emotion/Situation
NRO

LP Antagonism
L Sorrow, loss
N Romantic encounters

PRPR Mortal threats, dangers
RL Wonderment, success
NRL Suspense and mystery
RLRL Heroism (Lydian)
NR Fantastical
S Life and death

Table 1. (a) NRT Rewrite rules for major and minor chord starting points. In each case,
the starting chord is {a, b, c}. (b) Association of compound Neo-Riemannian operators
and emotional and/or situational scene elements (from [11]).

to a given piece of media. Underpinning GENRT is an extension of a musical
theory called Neo-Riemannian Theory, described in section 2. This theory was
devised for the analysis of music, but we provide a generative formalism, which
can be employed to make music, as detailed in section 3. We describe GENRT in
terms of this formalism in section 4, highlight the two main issues of producing
appropriate chord changes for events and making the music between events suit-
ably low-key, so the event music is not obfuscated. In section 5, we use GENRT
to produce a soundtrack for a clip from the film A Beautiful Mind, and we end
with conclusions and a discussion of future work.

2 Background

Neo-Riemannian Theory (NRT) comprises methods to analyse chromatic chord
progressions that do not employ tonality [6]. These types of chord progressions
can be difficult to analyse using conventional music theory, as they do not follow
traditional models which include the use of keys and modes to understand har-
monic developments. A musical cue such as a chord change can be analysed in
terms of which Neo-Riemannian Operators (NROs) have been used. As per the
original theory, an NRO applies a transformation to trichords consisting of the
tonic, third and fifth of a major or minor scale in some permutation. Every NRO
outputs a major chord given a minor one as input, and vice-versa, and each can
act on any trichord. The six NROs originally identified are given in table 1(a).
It is also possible to analyse a single chord change as the application of multiple
NROs iteratively, which we call compound NROs.

Chromatic chord progressions are widely used in movie soundtracks, as the
film scenes often change in rapid, fairly pronounced ways, and composers have
found that chromatic chord progressions highlight these changes well. In [11],
Lehman analysed film scores in depth and found certain chromatic chord changes
– which he described in terms of compound NRO usage – were commonly used
by composers to illustrate emotional or situational changes in the movies. For
instance, a quick change of chords can be used to represent important on-screen
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events such as the appearance of a character, a significant death or a disappoint-
ing failure. Lehman mapped compound NROs to emotional/situational changes
in film narratives, as per table 1(b) by analysing various soundtrack cues and
noting when certain operators were used to describe specific events. While not an
exhaustive list of compound NROs and emotions, it provides a starting point to
understand how chromaticism can represent events and emotions in soundtracks.

The original papers on NRT obfuscated matters somewhat with fairly dense
and sometimes superfluous mathematics. In [4], we rationalised the operators as
NROs as portrayed in table 1(a). This enabled us to describe a basic generative
reading of NRT where the NROs are employed as conditional re-write rules,
with the condition being whether a trichord is major or minor. We likewise
rationalised the notion of compound NRO and, drawing on the work of Cohn
and Lehman, stated the main tenets of generative NRT as follows:

• Chord sequences are produced from a given starting chord via the repeated
application of compound NROs.

• Emotional and situational changes in the target media can be reflected in the
music via the application of particular compound NROs, as per table 1(a) to
produce suitable chord changes.

• The longer the compound NRO used for a chord change, the more striking it
will be, audibly.

Using these tenets as a foundation, we significantly generalise and extend this
formalism in section 3 below, to enable generative NRT to become the basis of
a working implementation of the GENRT music generation system.

2.1 Related Work

The generation of chord progressions has been much investigated for automatic
production of musical harmony, and Wiggins [15] looked at the notion of in-
tentionality in this respect, which is important for the generation of chord pro-
gressions to accompany scenes from media such as films. Bernardes et. al. [2]
implemented the D’accord harmony generation system which worked over a per-
ceptually motivated tonal interval space. While not using NRT, Monteith et al.
[13] generated music to induce targeted emotions, using statistical techniques
such as Hidden Markov Models, and applied this in [12] to produce affective
music to accompany the audio of fairy tales being read aloud.

Neo-Riemannian Theory for music generation has been explored in as Chew
and Chuan [5], where a style-specific accompaniment system was proposed. The
system utilises NRT to represent transitions between neighbouring chords. The
authors make use of roman numeral musical analysis to describe the chord pro-
gression. This is an analysis technique usually used in tonal music, as the roman
numerals describe tonal relationships between chords. Given this observation,
this work seems to be aimed at the generation of diatonic, tonal chord progres-
sions which respect functional harmony. This is a limitation of this approach,
as NRT is used to analyse chromatic progressions which are not restricted to
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functional harmony rules. Similar limitations can be observed in other systems
and approaches, such Amram et al. [1]. Here, the authors implement a generative
chord-based composition tool. Similarly to [5], the authors implement NRT in a
tonal, diatonic way, therefore not using the theory to its full potential.

Other emotion-based systems include Mind Music [7], which focuses on de-
signing music based on a character’s emotions using mood nodes and a spreading
activation model, creating adaptive audio for game characters. Hutchings et al.
[9] further developed these ideas, proposing an adaptive music system that com-
bines a multi-agent system (MAS) and cognitive models of emotion. The agents
focused on harmony, melody and rhythm to develop compositions.

3 Extended Generative NRT

In order to produce more diverse music and to have more options for controlling
the generative process, we have substantially extended and adapted our genera-
tive NRT approach as described below. Our starting point was the observation
that each of the existing NROs took a trichord of tonic, third and fifth notes
from either a major or minor scale, and produced a new trichord which is also a
major or minor tonic, third or fifth. Each of the original NROs preserves at least
one note of the original chord and no note in the output chord is more than a
tone away from a note in the original chord. To describe the extended generative
NRT implementation in the next section, we use a formalism which extends tri-
chords and NROs. We start by generalising trichords past the limitation of just
major and minor chords, as follows:

• [A1] A note is an integer from the midi pitch range {0, . . . , 127}. For instance,
middle C on a piano keyboard is note number 60.

• [A2] The note class for a given note, N , denoted nc(N), is calculated as:
nc(N) = {k : 0 ≤ k ≤ 127 and k mod 12 = N mod 12}
e.g., the note class for middle C (midi note 60) is {0, 12, 24, 36, . . . , 120}.
• [A3] A general trichord, T = [t1, t2, t3], is an ordered triple of three distinct
notes from strictly different note classes where no two notes are less than a
whole-tone apart, i.e., ∀ i, j |ti − tj ] >= 2. We say T is sorted if t1 < t2 < t3.

• [A4] A general trichord T = [t1, t2, t3] is a major trichord if some permutation,
[a, b, c], of T is such that b−a = 4 and c− b = 3. Likewise, T is a minor trichord
if there is a permutation [a, b, c] such that b− a = 3 and c− b = 4.

Given this foundation, we generalise Neo-Riemannian operators from the
originals to work with the expanded definition of trichords.

• [B1] A General Neo-Riemannian Operator (GNRO) is an ordered triple of
integers [n1, n2, n3] such that ∀ i (−2 ≤ ni ≤ 2) and 0 ∈ {n1, n2, n3}.
• [B2] An application of a GNRO, G = [n1, n2, n3], to a general trichord, T =
[t1, t2, t3], denoted G(T ), involves adding in place the three values of G to the
three values of T , i.e., G(T ) = [t1 + n1, t2 + n2, t3 + n3].
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• [B3] A Compound GNRO (CGNRO), [G1, G2, . . . , Gk], of length k, is a non-
empty ordered list of k GNROs.
• [B4] An application of a CGNRO, C = [G1, G2, . . . , Gk], to a general trichord,
T , denoted C(T ) involves the iterative application of each Gi to the previous
result, i.e., C(T ) = Gk(. . . G2(G1(T )) . . .).

The original set of NROs given in table 1(a) had the advantage that, given
a major or minor chord as input, the output would also be major or minor.
Unfortunately, that is not true of GNROs, i.e., given a general trichord as input,
the output might not be a general trichord as per definition A4. Hence we specify
the admissibility of a GNRO for a given chord below. Also, as we discuss in the
following sections, to produce acceptable music to accompany a given video clip,
requires the ability to produce situational chord changes at exactly the right
dramatic moment in the target video. This is enabled by the use of the original
NROs of table 1(b), re-interpreted as CGNROs.

• [C1] A CGNRO, C, is admissible for a given general trichord, T , if and only
if the resulting triple of notes, C(T ), is itself a general trichord, i.e., with three
notes in distinct note classes and each pair of notes at least a whole tone apart.
• [C2] A CGNRO, C, is m-admissible for a given general trichord T if and only
if C(T ) is either a major or a minor trichord as per definition A4.
• [C3] An ordered pair of two admissible CGNROs, [C1, C2], produces a situa-
tional chord sequence from a given general trichord T , if C1 is m-admissible, and
C2 is from table 1(b). In effect, C1 makes sure that the general trichord input to
C2 is a major or minor trichord, so the emotional effect of using C2 is correct.

Importantly, the generative process also requires producing music in between
the dramatic moments which doesn’t include any striking chord changes that
might obfuscate the dramatic chord change when it happens. The following
definitions help describe how we try to achieve this:

• [D1] A major key signature for the note N is the list of note classes:
[nc(N), nc(N + 2), nc(N + 4), nc(N + 5), nc(N + 7), nc(N + 9), nc(N + 10)].
A minor key signature for the note N is the list of note classes:
[nc(N), nc(N + 2), nc(N + 3), nc(N + 5), nc(N + 7), nc(N + 8), nc(N + 10)]
• [D2] A general trichord, T = [t1, t2, t3], is in the (major or minor) key signature,
K, of given note N if ∀ ti ∈ T, nc(ti) ∈ K.
• [D3] Given a focal note, N , a general trichord, T = [t1, t2, t3], can be focal
mapped to N by calculating T ′ = [t′1, t

′
2, t

′
3] such that ∀ i, (t′i ∈ {1, . . . , 127} and

∄ k ∈ {1, . . . , 127} where nc(k) = nc(t′i) ∧ |k −N | < |t′i −N |). Informally, the
mapping takes each ti to the note in the same note class closest to N .

Soundtracks usually comprise more than a chord sequence, and GENRT af-
fords the production of music with 8 tracks: three for the notes of a trichord, three
for percussion, and one each for a melody and bassline. Described in more detail
below, the trichord sequence is dictated by the application of CGNROs, starting
from a given general trichord. It can be given a rhythm so that the chord is
played multiple times during a (given) timespan. The melody and bassline can
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len num admissible m-admissible identity different
min av max min av max min av max min av max

1 60 16 31 51 2 9 12 0 1 2 15 31 51
2 3600 1242 1697 1920 212 405 552 60 72 95 102 142 195
3 216000 77151 94470 104535 15594 21880 25146 1248 1805 2955 220 314 412

Table 2. Number of admissible, m-admissible and identity CGNROs of length 1, 2
and 3 over all general trichords with notes in one octave. Number of different chords
realised. Values have been rounded to the nearest integer.

mirror the trichord to selectively play a sequence of notes from the chord at
different octaves, using a given rhythm. To describe this, we use the following
definitions:

• [E1] A musical episode of a given duration (in ms), d, spans a chord sequence
of N general trichords [c1, . . . , cN ], with the duration (in ms) of chord c being

denoted dur(c), such that
∑N

i=1 dur(ci) = d.
• [E2] For a given general trichord, T , and given a number of beats b that dur(T )
is to be split into, a rhythm specification, denoted rh(T ), for T is a set of pairs
(t/b, d/b) which each dictates that the chord should be played on beat t, and
last for d beats.
• [E3] For a given general trichord T = [t1, t2, t3] and given the number of beats,
b, that dur(T ) is to be split into, the melody specification for T , denoted mel(T )
is a set of triples (ti, t/b, d/b) where each ti ∈ C. Each triple dictates that while
chord T is playing, melody note ti + 12 should start at beat t and last duration
b. The bassline specification for T is the same as a melody specification, but
specifies that notes ti − 24 are to be played.
• [E4] A duration fraction signature is a list of fractions [ 1

p1
, . . . , 1

pk
] such that

each pi is an integer and ∀i, pi < pi+1.
• [E5] Given a duration of d ms, a sequence of notes N = [n1, . . . , nj ] to be
played over d, and a duration fraction signature F = [ 1

p1
, . . . , 1

pk
], we say that

N adheres to F if the start time, si, of each ni can be expressed as si = d ∗ fi
pi

for some pi ∈ {p1, . . . , pk} and integer, fi, such that fi ≤ pi and fi ≥ 0.
• [E6] If a sequence of notes, S, with starting times s1, . . . , sn adheres to du-
ration fraction signature F = [ 1

p1
, . . . , 1

pk
], we say the level of adherence of S

is the smallest x ∈ {1, . . . , k} for which ∀ i si = fi
px

for some integer fi. As an

example, suppose F = [ 11 ,
1
2 ,

1
4 ,

1
8 ] and a three note melody, M , is to be played

over duration d, with notes starting at d ∗ 0
4 , d ∗

2
4 and d ∗ 3

4 . Here, M adheres to
F at level 3, as 1

4 is the third fraction in F .

3.1 The Distribution of Admissible CGNROs

In order to guide the implementation of the GENRT system, we checked the
distributions of admissible CGNROs of lengths 1, 2 and 3, as reported in table
2. With an exhaustive search, we determined that there are 112 general trichords
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as per definition A4, with notes all between middle C and the B note above it.
There are also 60 CGNROs of length 1, hence 602 = 3600 of length 2 and
603 = 216, 000 of length 3. We applied each of the CGNROs of length 1 to
each of the 112 general trichords and recorded the number of CGNROs that
are admissible and the number which are m-admissible for each trichord. We
did the same for length 2 and 3 CGNROs and recorded the minimum, average
and maximum numbers of admissible and m-admissible CGNROs in table 2. In
addition, we determined how many applications of a CGNRO to a trichord were
identity mappings resulting in no overall change in the three notes of the chord.
Finally, we recorded how many distinct chords resulted in the application of the
entire set of CGNROs to each trichord, again recording minimum, average and
maximum values of this in table 2.

We see that when CGNROs of length 1 are used, there are an average of 31
which can be used for a general trichord and this number greatly increases as
the length of the CGNRO increases. However, there are only an average of 9
m-admissible CGNROs of length 1, and for some chords, this can be as low as
2. While this guarantees that every general trichord can be turned into a major
or minor chord with a CGNRO of length 1, there is not much diversity. We also
see that there is a lot of redundancy in the set of CGNROs. For instance, while
there are 216,000 possible CGNROs of length three to apply to a given general
trichord, they result in only 314 different chords, on average, and 1,805 of the
CGNROs are the identity mapping, again on average.

4 The GENRT Music Generation System

Two initial requirements for generative soundtrack production are that musical
changes happen at precise times and for tempo changes to increase and decrease
tension in episodes. We have implemented in the GENRT system the following
approach for generating music which fits a given video clip by ensuring that cer-
tain CGNROs are employed at given times which match emotional or situational
changes in the video. The user can also specify ways in which the music is damp-
ened between the dramatic changes, so that the chord changes the CGNROs
impose have more effect, i.e., are not obfuscated by the surrounding music.

4.1 Event-Reflecting Musical Episodes

As per the definitions of section 3, each soundtrack is composed of a series of
episodes which each consist of a sequence of general trichords, played on one
instrument. The soundtracks also have a melody and bassline played on (op-
tionally) different instruments, and three percussion instruments adding rhythm
and texture. The user specifies the number of episodes that the composition will
have. Each episode is specified to either have a particular duration or to end with
a particular situational chord sequence (as above), with the final chord change
happening at a precise number of milliseconds since the start of the composition.
The user also specifies a target for the duration of the first chord (in ms) and a
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target for the duration of the last chord in each episode, along with the notes of
the starting chord (or specifies that it can be a random general trichord). If the
first and last chords of an episode differ in duration, then this indicates a gradual
change in tempo during the episode, to be smoothly realised by GENRT.

Given these specifications, GENRT calculates the durations for a chord se-
quence as follows. Suppose the start chord duration target is s and the end chord
duration target is e, with the final chord happening at time t to coincide with
a situational/emotional change in the video. For a smooth linear transition of
chord durations from s to e, GENRT determines the number of chords in the
sequence, n, so that the number of milliseconds changes from one chord to the
next is r and the final chord occurs at t. We note the following equations hold:

(i) t =

n−2∑
i=0

(s+ ir) (ii) e = s+ (n− 1)r

The first equation states that the total duration of the first n-1 chords needs
to equal the timestamp, t, when the final chord is to be played; and the second
expresses the final chord duration, e, in terms of the start chord duration, s,
and the variables n and r. Expanding (i) using the well-known formula for the
summation of the first i integers, we see that:

(iii) t = (n− 1)s+ r

(
n−2∑
i=1

i

)
= (n− 1)s+ r

(
(n− 1)(n− 2)

2

)
We can also arrange (ii) to show that: (iv) r = (e−s)

(n−1) , and substitute this version

of r into (iii), to get:

t = (n− 1)s+
(e− s)

(n− 1)

(
(n− 1)(n− 2)

2

)
= (n− 1)s+

(
(e− s)(n− 2)

2

)
enabling us to solve for n, giving:

n =
2(t+ e)

(s+ e)

We can calculate r using n in equation (iv). Note that in practice, we need to
take the floor, ⌊n⌋, of the calculation for n above, as it is the number of chords
in the episode, hence an integer. This introduces a discrepancy that means the
final chord doesn’t happen at the correct time t. To correct this, a value of x
milliseconds is added to the duration of each of the chords. x is calculated by
using ⌊n⌋ in equation (iv) to calculate r, which is in turn used along with ⌊n⌋
in equation (iii) to calculate a value t′. The difference between user-given t and
t′ is divided by n − 1 to give x. This ensures that the timing of the final chord
is at exactly time t, but means that the start and end chord durations are often
not exactly as targetted by the user, but are usually very close. Note also that,
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if the user only supplies a duration, d, for the episode and not a timing for the
final chord, GENRT calculates n and r in a similar way using d instead of t.

The use of episodic music production is vital for the application of GENRT
to soundtrack generation. By enabling the user to specify the end chord dura-
tion for one episode to be the start chord duration for the next episode, they
smoothly merge during the soundtrack, allowing tempo changes to reflect longer-
term atmospheric changes. This supplements the reflection of dramatic or situa-
tional changes in the video with CGNRO-generated chord changes. The user can
also specify start and end volumes for each of the instruments (chords, melody,
bassline and percussion) in each episode. The user specifies which MIDI instru-
ment each track has and we use the Fluidsynth sound font (fluidsynth.org) for
these. Instruments are specified on a per-episode basis, and the user can also
specify a number of chords in advance of the episode change that the change
of instruments begins. GENRT then uses two tracks to interpolate the volume
of the latter episode’s instruments from zero to one during this period, likewise
interpolating the former episode’s instrument volume from one to zero.

4.2 Chord Sequence Generation

Once the number and duration of chords in an episode have been calculated,
GENRT generates a random sequence of CGNROs with which to generate a
chord sequence. Starting with the user-given chord, e.g., middle C, E, G of C
major, the first CGNRO is chosen randomly from those which are admissible
for this general trichord. Applying this CGNRO produces a new chord, and the
process iterates until near the end of the episode. The user can specify that a
single dramatic/situational event happens per episode. To do so, they supply the
timestamp in milliseconds from the start of the soundtrack that this happens
at and a keyword from the list of table 1(b): [Antagonism, Sorrow, Romance,
Threat, Wonderment, Mystery, Heroism, Fantasy, LifeAndDeath].

GENRT ensures that the corresponding CGNRO from table 1 is applied
to generate the final chord of the episode via an appropriate situational chord
change (definition C3). Given that the audible power of the chord change has
only been considered for major or minor chords, GENRT must ensure that the
penultimate chord to which this CGNRO is applied is either major or minor.
To do this, it chooses the penultimate CGNRO randomly from the list of m-
admissible ones available to apply to the anti-penultimate chord. We note from
table 2 that there will always be at least two m-admissible CGNROs to choose
from. The user is able to provide a different rhythm specification (definition E2)
for the chords of each episode, so that over the chord duration, the notes of the
chord are played rhythmically, if desired.

4.3 Bass, Melody and Percussion Generation

Once a chord sequence has been generated using random CGNROs, GENRT
generates a bassline and melody to fit the chords. These processes are currently
fairly simplistic and we plan to improve upon them in future work. For the bass,
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the user provides a bassline specification as defined in E3, for a given trichord,
that dictates which of the three notes of the chord are played and at what time
during the chord duration, at two octaves below the chord note. The user can
also specify how staccato the notes are by providing a cutoff proportion so that
each note is curtailed before its full duration.

For melodies, the user can also provide a melody specification as per E3 which
will generate note sequences for a chord an octave above its notes. Alternatively,
they can specify that GENRT itself produces a voice-leading melody. It does
this in two stages over all the episodes of the composition. Firstly, for the first
chord of the first episode, it chooses a random permutation of the chord’s three
notes, so that the notes an octave above become the backbone of the melody for
that chord. For each subsequent chord, GENRT chooses a permutation of the
chord’s notes for which the first note is as close to the last note of the melody
for the previous chord as possible.

In the second stage, passing notes are added between every pair of backbone
notes (b1, b2) for each chord’s melody. Assuming that b1 < b2, starting at b1 +2,
passing notes which are a whole-tone away from the previous one are added until
b2 − 2 is reached. If the final backbone note of a chord’s melody is the same as
the first of the next chord’s melody, the former is removed. If not, then more
passing notes are added to join the end and start notes accordingly. As before,
the user can specify a cutoff proportion, so that the melody sounds more staccato
if required. Three different percussion instruments can be specified and utilised
by the user providing rhythm specifications for each, as per definition E2.

4.4 Dampening the Music between Events

In initial tests with the extended generative NRT approach, we found that it
was often hard to hear the emotional/situational chord changes because there
were many similar chord changes in advance which somewhat obfuscated things.
One way to address this is to make the intermediate music less striking, and
we implemented some techniques in GENRT that users can experiment with for
this purpose, as follows.

Firstly, the minimum and maximum length of the CGNROS that are em-
ployed in generating the chord sequence can be set. As the CGNROs get longer,
the further the output chord notes are from the input ones, and the more au-
dibly striking the chord sequence is. Hence, employing only CGNROs of length
1 or 2 is advised for subdued intermediate music. The user can also specify a
major or minor key signature as a fixed key for the chords in the episode. As
per definition D2, a general trichord is in key K if the note class of each of its
notes is in K. GENRT can then choose only CGNROs where the output chord
is in the fixed key. We have found that this significantly dampens the music.
Note that the emotional/situation CGRNO specified in an event is exempt from
this rule, which makes the chord it produces more impactful. In addition, when
GENRT produces voice-leading melodies, it can be told to ensure that all the
passing notes are in the chord sequence’s fixed key, if there is one.
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Sometimes the random nature of CGNRO selection that GENRT employs
can produce pitch drift, in that the chords go consistently up (or down) in
pitch, dragging the whole composition with them. While this is something that
users may want to add by design, it can be striking and create music which is
inappropriate for an episode. Hence, we added the option for GENRT to map
each generated chord to a user-given focal note, as per definition D3. This ensures
that all chords stay in roughly the same pitch range.

When GENRT produces a voice-leading melody M = [m1, . . . ,mn] over a
chord, by default it plays each note of the sequence at equal intervals over the du-
ration of the chord, d. Often, this clashes with the static, user-specified rhythms
that the chords, bassline and percussion instruments play. That is, the number of
notes in M means there are polymetric rhythms at play, for instance, five melody
notes played at the same time as four chord repetitions. This can be quite strik-
ing, so we added the option for users to suppress this by specifying a duration
fraction signature F = [ 1

p1
, . . . , 1

pk
] as per definition E4. Then GENRT takes the

generated melody for a chord and produces a list of start times [s1, . . . , sn] with
an optimally high level of adherence to F , as per definition E6. To do this, it
finds the largest fraction 1

px
∈ F which is smaller than or equal to 1

n and sets

each si initially to i−1
px

, with each note initially having duration d ∗ 1
px

over d.
This can mean that the total duration of the notes is less than d, and melodies

end early for a chord, which is noticeable and undesirable. Hence GENRT ran-
domly chooses a note to extend the duration of, and this is done by adding 1

px
.

Accordingly, GENRT increases the starting points of the notes following the ex-
tended one. It does this until the total duration of the notes is d. Noting that
passing notes in a melody can often clash with the chord being played at the
same time, we further refined the process so that only the backbone notes of
the melody (which don’t clash) were extended. This quantization of the note
starting points means that a duration fraction signature can be specified which
fits with the static rhythms of the chords, bassline and percussion, e.g,. if they
only start at moments which are multiples of 1

8 of d, then a duration fraction
signature of F = [ 11 ,

1
2 ,

1
4 ,

1
8 ] will ensure that the melody notes all do likewise.

Optimal adherence level to F (definition E6) means that the melody notes will
have the simplest rhythm.

Trying these optional specifications for music generation, we found that we
could hear the dampening of music reasonably well. However, to be more concrete
and confident in this, we performed some experiments to quantify the benefits
in this respect. As per the previous experiments, we exhaustively applied all
CGNROs up to length 3 on all 112 general trichords with notes between middle
C and the B above. However, in a second session, we stipulated that only input
chords where all notes in the fixed key of C major were considered, and the
result was only recorded if the output was likewise in the key of C major. This
simulates the usage of a fixed key to dampen chord sequences. In a third session,
we instead mapped all the input chords and output chords to focal note 66. To
measure the dampening effect in these sessions, we used two measures:
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session len admissible m-admissible chord dist focal dist
min av max min av max min av max min av max

standard 1 16 31 51 2 9 12 0.00 0.78 1.33 1.33 3.11 6.00
2 1242 1697 1920 212 405 552 0.00 1.00 2.67 1.33 3.22 7.33
3 77151 94470 104535 15594 21881 25146 0.00 1.17 4.00 1.33 3.33 8.67

fixed 1 5 9 13 0 3 5 0.00 0.74 1.33 1.67 3.14 4.67
key 2 337 451 518 36 118 178 0.00 0.78 2.33 1.67 3.25 6.33

3 18002 21961 24272 3546 5723 6813 0.00 0.99 4.00 1.67 3.39 7.67

focal 1 16 31 51 2 9 12 0.00 0.88 3.00 1.33 3.00 4.67
mapped 2 1242 1697 1920 212 405 552 0.00 1.07 4.00 1.33 3.00 4.67

3 77151 94470 104535 15594 21880 25146 0.00 1.16 5.00 1.33 3.00 4.67

Table 3. Number of admissible and m-admissible CGNROs, chord distances and focal
note distances for standard, fixed key and focal mapping sessions.

• Chord distance measures the distance of a chord, O, output from a CGNRO
from the input chord, I. To do this, for each note of O, it determines the closest
note (or notes) in I, and calculates the absolute distance to it. An average over
the three input notes of the input general trichord gives an overall distance. The
intuition here (as highlighted by analytical NRT) is that the further a chord is
away from the previous one, the more striking the chord change is.

• Focal point distance measures the distance of the output chord from a given
focal note N . It does this by averaging the individual absolute distances of each
note from N . The intuition here is that a series of chords with pitches occurring
in a narrow range will be less striking than a series within a larger pitch range.

The number of admissible and m-admissible CGNROs of lengths 1, 2, and 3
for the exhaustive standard session, fixed-key session and focal-note session are
given in table 3. Note that the standard session is the same as in table 2 above,
for easy comparison. We see that, as expected, the mapping to a focal note
doesn’t alter the number of admissible CGNROs. However, if the chords of an
episode are constrained to those in a particular key, then the average number of
admissible and m-admissible CGNROs available for a chord drops considerably,
and it may be sensible to allow longer length CGNROs to maintain a level of
diversity in the output. Table 3 highlights a procedural problem, i.e., that if the
user employs a fixed key and only CGNROs of length 1 (for high dampening),
then for some chords, the number of m-admissible CGNROs is zero, hence it
would not be possible to produce a major or minor chord ready for a CGNRO
from table 1, to reflect an emotional or situational change. To fix this when it
happens, we allow GENRT to temporarily increase the CGNRO length to 2.

The distance metrics are also given for the three sessions in table 3. We see
that, as expected, average chord distance increases along with CGNRO length
allowed, from 0.78 (length 1 in the standard session) to 1.00 (length 2) and
1.17 (length 3). There are similar increases in the other sessions. Hence, users
can control the amount of dampening through experimentation with CGNRO
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lengths. Fixing a key lowers the average chord distance to 0.74, 0.78 and 0.99
for CGNRO lengths 1, 2, and 3 respectively, which provides audible dampening.

The average distance of a chord from a focal note also increases with CGNRO
length, but, as we can see in table 3, the focal mapping routine minimises this. We
note, however, that focal mapping considerably increases the maximum distance
of an output chord from the input chord, because the mapping can occasionally
move chords a lot. We see that the average chord distance in the focal mapped
session was similar to that in the standard session, but the maximum chord
distances are higher, hence there is a higher likelihood that a striking chord
change could happen in an episode with focal mapping. Users should therefore
employ focal mapping carefully and monitor the chord distances. In future, we
intend for GENRT to use distance measures when selecting CGNROs.

5 An Illustrative Example

GENRT is a python program which produces music in MIDI form. It handles
timings by turning chord durations into MIDI ticks, and we chose 960 ticks
per second, so that millisecond timings can be passed on to the MIDI with
high accuracy. The system is in development, and is not sophisticated enough
yet to produce particularly beautiful or innovative music. However, returning
to the problem setting in section 1, our purpose here is only to show that (a)
GENRT produces accurate soundtrack music for a video clip, in terms of the
timing of episodes and events which match the media exactly (b) users have
satisfactory levels of control over the atmosphere of the music in the episodes,
and GENRT can smoothly change the mood over the period of an episode (or
multiple episodes) and (c) particular emotional or situational events in the media
are highlighted in audible ways with the generated soundtracks.

To test GENRT, we asked a trained musician (second author) with a back-
ground in composing soundtracks to create event-based music for a clip of the
movie A Beautiful Mind [8]. This is a biographical drama that narrates the
story of the mathematical genius John Nash. After making an incredible dis-
covery, the protagonist is diagnosed with paranoid schizophrenia, and the story
follows Nash on a journey of self-discovery, balancing mental health and his
job as a cryptographer. The soundtrack is tasked with representing the work-
ings of Nash’s incredible mind, and its struggles. The composer of the movie’s
soundtrack, James Horner, represents Nash’s genius with a series of beautiful
and fast-moving chord progressions throughout the soundtrack. Music theorist
Frank Lehman wrote about the representation of genius in A Beautiful Mind’s
soundtrack [10] and used NRT to analyse its chord progressions. Horner’s chord
progressions use chromatic triadicism, especially the L, R and S NROs (see table
1(a)), hence are difficult to accurately analyse using traditional music theory.

In the 2 minute, 26 second film clip we chose, John Nash’s antagonist and his
group of friends are playing Go, when they encounter Nash. The protagonist is
challenged to play a game of Go against his adversary while the group of friends
watches. Nash is sure he is going to win, and the game seems to suggest that
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Fig. 1. GENRT chord sequence for the film clip from A Beautiful Mind, with chord
start times, episodes, and the user-selected CGNRO for two transitions.

too, but to his surprise, he loses. There is a situational change in the clip to be
highlighted in the soundtrack, at 69s, when the game starts, and an emotional
change at 112s, when Nash loses and is antagonised by his opponent.

The musician employing GENRT used four different episodes for the sound-
track generation, each with different specifications to reflect the on-screen events
and emotions. The first episode of 20s generates the music for the preamble to
the scene. For this episode, the musician specified the starting chord of C ma-
jor and further employed a fixed key of C Major for the chord sequence. This
forced the music to be somewhat dampened, as the scene during this period is
just a preparation for the game. There was no event set for this episode. The
volume faded in slowly during this episode, setting an appropriate atmosphere
and introducing the soundtrack. To strengthen the emphasis on the introduction
setting the scene, the chord progression moves quite slowly at 4000ms per chord.

The second episode covers the period leading up to the game starting. To
ensure continuity between the first and second episodes, the start chord duration
was set to 4000ms, and increases to 3000ms during the episode, to raise the
tension until the game starts. The key fix on C Major is continued, so the music
is dampened and the change to the next episode, which generates the chord
change for when the characters play the game, is audible. The event of this
episode happens when the game starts, at 69,000ms, and the musician chose the
mystery CGNRO (see table 1(b)) to reflect intrigue at the start of the game.

The third episode generates the music played during the Go game. The key fix
functionality is turned off here so that the tool generates music which uses triadic
chromaticism, using CGNROs up to length 3, which adds some disorienting
tension during the game. As the game progresses, the music gets faster until
the event of the episode at 112,000ms. This is when Nash loses the game, and
is represented by the antagonism CGNRO. In the fourth episode, the musician
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emphasised Nash’s loss by turning key fix functionality back on and instantly
reducing the tempo to much more slow-moving chords. As the scene comes to an
end, the volume fades out to zero. The musician maintained consistency across
episodes, with strings for chords, violin for the melody and cello for the bass. As
per the original soundtrack, percussion was turned off. Each episode had chords
fixed to focal note 48, to keep the music in a suitable pitch range.

The chord sequence and timings for the Beautiful Mind clip accompaniment
are given in figure 1. We see there 41 chords and inspection of the start times of
these shows that (a) the episode durations, situational change at 69s [chord 19]
and emotional change at 112s [chord 35] were accurate to within a few millisec-
onds, and (b) the increase in tempo was smooth. On listening to the soundtrack,
the music was more calm leading up to chord 19, more turbulent during the
third episode and calmer towards the end of the soundtrack, as desired by the
musician. The mystery CGNRO – reflecting the Go game starting – successfully
interrupted the tonal chord progressions from the previous two episodes at chord
19, making the start of the game aurally noticeable. Chord change 35 (antago-
nism) was less prominent but still noticeable. Overall, the musician was satisfied
with the accuracy, atmosphere and influence of the soundtrack.

6 Conclusions and Future Work

We have presented the GENRT system for automatically producing soundtracks
for media such as video clips, and shown that it has promise for producing
accurate, atmospheric and influential music. There are many next steps for this
implementation, including: exposing more parameters for users to control the
generation with; increasing the sophistication of melody generation and adding
counterpoint production; and stronger dampening of the music between events.
We also plan to combine this symbolic approach with deep learning so that a pre-
trained neural model can be used to select musical sequences in terms of which
fits best to a distribution, hopefully increasing the quality of the output. We may
employ evolutionary and other search techniques to alter episode specifications
(rather than musical choices), as part of this. Soundtracks often include musical
leitmotifs, [3] [14], which consistently portray a character, and we intend to
experiment with the generation and deployment of these in GENRT.

Once GENRT is somewhat more sophisticated, we will undertake a first
round of user studies with novice composers, to assess its utility and future
directions for its functionality. We also plan to carry out experiments on param-
eter tuning and checking correlation with other musical metrics in the output.

To describe and implement GENRT, we extended generative Neo-Riemannian
Theory in various ways, including generalising the trichords which can be gener-
ated for a chord sequence. This required a number of adjustments in terms of the
operation of the CGNROs. We also introduced and implemented ways in which
the application of CGNROs to chord sequence generation could be dampened
so that intermediate music was more in the background. This was in order to
avoid obfuscating important chord changes which reflect events in the media.
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As our requirements for GENRT increase, we will continue to develop the
formalism to capture how generative NRT can be used to produce music. In par-
ticular, we intend to capture the interplay of chord sequences and leitmotifs with
the formalism. We plan to involve GENRT in some multi-modal projects, where
generative AI techniques are used to produce text and videos, with GENRT
providing accompanying soundtracks. We are also interested in producing inter-
esting and novel stand-alone music using GENRT. Our aim is to produce music
that has direction and purpose, as with the best human-made compositions.
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